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Non-equilibrium dynamics of the Ising model for T <  T, 
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Oepanment of Theoretical Physics, The University, Manchester MI3 YPL, UK 

Received 27 November 1990 

Abstract. The growth of order in Ising models with non-conserved order parameter is 
considered far quenches 10 final temperatures J,=O and T,= T,. The results of numerical 
simulations in spatial dimension d = 2 are presented. In all cases a scaling regime is entered 
for sufficiently long times, where the characteristic length scale is the 'domain sire', 
U t )  - 1"'. for J ,  = 0, and the 'non-equilibrium correlation length', # ( I )  - for J,  = T,. 
The equal-time correlation function has the expected scaling forms J ( r / L ( I ) )  and 
r - ' " - 2 + 7 v c ( r / [ ( r ) )  for T,=O and 7. respectively. The scaling function f c ( x )  has interesting 
shon-distance behaviour which is elucidated using scaling arguments and by E -  and 
I/n-expansions. The T =  0 scaling function f (1) depends an whether the spin correlations 
present in the initial conditions are of long or short range, as does the exponent i which 
describes the decay of the autocorrelation function, A ( r ) = [ ( S , ( r ) ) S , ( O ) l -  LiI).'. Results 
for a quench from the equilibrium critical state to T,=O are consistent with theoretical 
predictions. 

1. Introduction 

One of the difficult outstanding problems in phase transitions is that of the ordering 
dynamics of a system quenched into the ordered phase from a high temperature 
equilibrium state [l]. It has been shown that the ordering process depends crucially 
on whether the order parameter of the system (the magnetization in the case of a 
ferromagnet) is CO"ved or not. For a conserved order parameter (model B) this is 
the phenomenon of phase separation or 'spinodal decomposition'. Here we are inter- 
ested in the dynamics of systems with a scalar, non-conserved order parameter (model 
A), which corresponds to an order-disorder transition. 

For quenches into the ordered phase, the time-dependent structure factor & ( f )  = 
[ ( & ( f ) & k ( f ) ) ] ,  (where & is a Fourier component of the scalar order parameter field, 
while angle brackets and square brackets indicate averages over thermal noise, if 
present, and over initial conditions respectively) and its Fourier transform, the equal- 
time correlation function, are found to exhibit the following scaling forms [l]: 

where L ( f )  is the 'domain scale' and L ( f ) -  
parameter [2]. 

scaling forms 

for a non-conserved scalar order 

For a quench to T,, on the other hand, conventional critical scaling implies the 

S d O  = k-2+"gc(k5( t ) )  (3) 
c(r, 1 )  = r - ( d - 2 + n )  L ( r l f ( f ) )  (4) 
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where TI = a  for the 2D king model. The ‘non-equilibrium correlation length’ ( ( 1 )  [3] 
(our i c = d - A c  is called Ac in [31) is the length scale over which critical static 
correlations have been established at time f. Dynamical scaling gives t ( t )  - t”’ where 
z is the dynamical exponent. 

Another important quantity, whose significance has only recently become apparent, 
is the response of the order parameter field to the initial condition, defined by 
4(f) = [J(+,(t))/a4,(0)]. For quenches into the ordered phase, and to the critical 
point respectively, it has the scaling forms 
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Gk(t) L ( f ) ” g r z ( W f ) )  T <  T, (5) 
G ( t )  = t ( t ) A c g R j k t ( t ) )  T = T ,  (6)  

where the scaling functions g ( x )  have g(0) =constant. It has been shown [4] that the 
exponent A, is a new critical exponent characterizing non-equilibrium critical dynamics, 
i.e. it is not related to z or the static exponents. Very recently, the analogous exponent 
A for quenches into the ordered phase has been calculated in a 1/n-expansion for an 
n-component vector order parameter [SI. Again, it is non-trivial, and unrelated to the 
exponent describing the growth of domains with time. 

Renormalization group (RG) treatments of domain growth dynamics [6-81 have 
led to the idea that a T=O RG fixed point controls the domain growth for all T <  T,,  
i.e. that thermal fluctuations are irrelevant to the asymptotic dynamics of the ordering 
system, their contribution being limited primarily to the renormalization oftemperature- 
dependent amplitudes in ( I ) ,  (2) and (5). Note that the domain scale also has a 
temperature-dependent amplitude, L( 1 )  = A (  T ) f ” *  [8]. The new non-trivial exponent 
A characterizes a critical behaviour which is ‘self-organized‘ because it is obtained 
throughout the ordered phase as a consequence of the attractive (i.e. stable) nature of 
the T = 0 fixed point. This is in contrast with the critical fixed point, which is repulsive 
(i.e. unstable) in character. 

One of the most interesting questions in the field of ordering kinetics is to what 
extent the results are universal, i.e. independent of microscopic details associated with 
the Hamiltonian, equation of motion, or initial conditions. It has long been understood 
that the equation of motion is important, in that the results (the form of the domain 
growth law, the structure factor scaling function, etc) depend on whether the order 
parameter is conserved (model B) or non-conserved (model A) [I]. The class of models 
defined by the equation of motion J+,/af = - r k 8 f f / 8 + L ,  with Tr. - lkl” for k +  0, 
interpolate between model B ( p  = 2) and model A ( p  = 0), and corresponds to ‘super- 
diffusive’ transport of a conserved order parameter for O<p<2. An RG analysis [8] 
shows that the exponent 4 characterizing the domain growth (via L ( t ) -  t m )  is given 
by +=1/(1+p) for p> 1 and +=; (the non-conserved result) for p < l .  

A similar analysis can be carried out with respect to long-range forces in the 
Hamiltonian, if it contains a term of the form H L R =  JLRXk Ik/p+k+-x, with p C2. For 
p> 1, general RG arguments [SI give 4 = l / ( d + p - y ) ,  where d and y are the spatial 
dimensionality and the ‘scaling dimension of H at the T = 0 fixed point’ respectively. 
For a scalar order parameter with long-range forces, one finds 191 y = d - 1 for p > 1 
and y =  d - p  for p <  1. Hence + = 1/(1 + p )  and l / ( p + p )  for p >  1 and p <  1 respec- 
tively. 

Very recently the role of initial conditions in determining universality classes has 
been discussed [IO]. It has been shown that new universality classes are obtained when 
there are long-range, power-law correlations of the form [+(r)+(O)]- r - ( d - u )  in the 
initial conditions. Such correlations do  not affect the growth exponent 4, but do change 
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scaling functions and the value of the exponent A which characterizes the correlation 
with the initial conditions in the non-conserved case. For initial conditions with 
sufficiently short-range correlations, U < uc = d -2Asn, the exponent A retains its short- 
range value As, [lo]; A,, has been calculated to O( l /n)  for an n-component non- 
conserved order parameter [5]. For long-range correlations, U > uc, however, A acquires 
a u-dependence, of the predicted form A L n = ( d  -u ) /2  [lo]. 

The exponent A is most simply measured through the time dependence of the 
correlation with the initial condition, or 'autocorrelation function', 

4 t )  = [(+(x, t))+(x,o)l 

=I [ ( + d t ) ) + - f i ( O ) I .  (7) 
k 

For initial conditions which are Gaussian random variables with correlator 

[+~(O)+-dO)I= Atst,*, (8) 

[ ( + k ( t ) ) + - k ( O ) l =  A t G ( f ) .  (9) 

it is easy to show that 

The proof proceeds by integrating the left-hand side by parts. For a non-Gaussian 
distribution of initial conditions, we expect the same result to hold as far as the scaling 
limit is concerned (although a proper RG treatment would be needed to justify this). 
The numerical results presented below confirm these expectations. Equations (5), (7) 
and (9) yield 

T i T , ,  u<uc (10) 

T <  T,, u>uc (11) 

these equations defining the exponents i. 
Similarly, for power-law correlations of the form (8), with Ak-lIkl-" for k+O, the 

structure factor was shown in [lo] to contain a 'long-range' contribution of the form 
S,""(r) = k-"f"s (k2f ) ,  with s(0) = constant. In comparison with the general scaling form 
( l ) ,  S)"( t )  makes a negligible contribution to the full S x ( t )  for u<uc. For u>uc, 
S:"(t) is part of the scaling function, which becomes long-ranged in space, i.e. 
g(x)-x-" for x+O in (1). In real space, this means that for U >  uc the equal time 
correlation function decays as 

A ( ~ ) -  t - ( d - b i / Z -  f - i s R / 2  

A ( ~ ) -  t - ( d - c - A L R i / 2 -  f -&,R/2 

c(r, t, t ) - ( L ( t ) / r ) d - "  for r > > L ( f )  and T < T c .  (12) 

A case of special experimental interest is when the initial condition is the equilibrium 
critical state, i.e. when U = 2 - 7. For the ZD Ising spin system, we would then expect 
A( I )  - t-"", and C(r ,  f ,  t )  - (&/r ) ' /4  for r >> fi, when the system is quenched to zero 
temperature from the equilibrium state at T,. Our simulation results confirm the above 
predictions. 

In this paper three different quenches are studied: (i) from T = m  to T=O; (ii) 
from T = T, to T = 0; and (iii) from T = m to T = T,. These are discussed in sections 
2, 3 and 4 respectively. For quench (i), Fisher and Huset [ l l ]  and Furukawa [12] 
have previously measured As, for the d = 2 king model, but their results differ. We 
find As,=1.24, in reasonable agreement with [ll]. We also show that the scaling 

t Our i d - A is called A by these authors 
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hypothesis (2) is obeyed, and that the scaling functionf(x) is isotropic. For the quench 
to T = O  from the equilibrium critical state (quench (ii)), problems associated with 
‘critical slowing down’ are avoided by using an accelerated convergence algorithm due 
to Wolff [13] to equilibrate the system at T,. The simulation results confirm (11) and 
(12) for the 2 - d  king model. For the quench to T, (quench (iii)), we obtain d --Ac= 
I,= 1.59.tO.02, in excellent agreement with Huse [3]. The scaling function f , (x )  (4) 
for this quench shows interesting behaviour for r / [ ( f ) < <  1, which is accounted for by 
scaling arguments and analytic computation of the short-distance expansion for the 
structure factor. 

K Humayun and A J Bray 

2. Equilibration at T = O  following a quench from T =m 

The Hamiltonian of our system is the conventional king Hamiltonian 

H = - S;Sj (13) 

where the sum is over nearest-neighbour pairs and the exchange interaction has been 
set to unity. Monte Carlo simulations were performed for lattice sizes of up  to 
N = 1000 x 1000 spins, with periodic boundary conditions. Data for smaller sizes show 
that the results presented here for N = 10002 are not significantly finite-size affected. 
The system is initially given a random configuration and then quenched to zero 
temperature, where it evolves using conventional ‘heat-bath‘ dynamics, adapted to 
T=Ot and vectorized by sequential updating of each sublattice in turn. The results 
are averaged over an ensemble of 160 independently generated initial configurations, 
with the final time measurement being at 800 MCS. (1 MCS means one update of both 
sublattices). These systems are larger than those studied in references [ 111 ( N  = 4002) 
and [12] ( N = 5 0 0 2 ) ,  the run times are longer and twice as many initial states are 
included. 

( U )  

During the simulation we compute the following quantities: 

(1) The excess energy per spin, 
r 1 

(2) The equal-time correlation function, 

1 C ( r ,  t ) =  N-’X Ss(t)Sj+,(t) [ (  
where here i + r indicates a site displaced by r lattice spacings, relative to site i. 
Displacements along lattice axes and lattice diagonals are included. 

(3) The autocorrelation function, 

t At T=O moves which decrease, leave unchanged or increase the energy are accepted with probability 1, 
4 or 0 respectively. 
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Since the excess energy resides in domain walls, and the area of wall in a volume 

A E ( f ) - L ( f ) - ’ .  (14) 

To determine the !-dependence of L ( f )  we plot AE(t) against l / f ’ / ’ .  The data are 
presented in figure 1 where, as elsewhere in this paper, the errors are smaller than the 
symbols. The excellent linearity of the data (times 2 100 are shown), which extrapolate 
nicely through the origin, confirms the asymptotic time dependence A E ( f ) -  l / f ’ ”  and 
implies, via (14), that L ( f ) - f ’ ’ >  as expected [1,2]. 

is of order the excess energy per spin should scale as 

0.01 1 

i I ,I 

0 0.02 0.04 0.06 0.08 0.10 

l iJt 

Figure I .  Relanation o f  the excess energy for the 2” k ing  model following a quench from 
T = m  to T=0.  The data, which represent an average of  160 histories o f  a 1000’ system, 
confirm the expected relation AE(r)K I-”’, with proportionality constant =0.521. Times 
between 100 MCS and 800 MCS are plotted: there are small departures from linearity for 
I < 100 MCS, where the dala are not yet fully in the scaling regime. 

Data for the equal-time correlation function C ( r ,  t )  is presented in figure 2, where 
the abscissa is the scaling variable r / f ” ’ .  C ( r ,  f )  is calculated for sites separated by r 
lattice spacings along the lattice axes and in the direction of the lattice diagonals. The 
excellent collapse of the data onto a universal curve confirms both the scaling form 
( 1 )  and the result L( f )  - f deduced from the energy relaxation. We can also conclude 
that the system is isotropic as C ( r ,  f )  scales perfectly in the direction of the lattice 
axes and along the lattice diagonals, with the same scaling functionf(x). This function 
is linear at small x, in agreement with Porod’s law [14]. The scaling function is in good 
agreement with that proposed by Mazenko [15l (which would be obscured by the data 
points if included in figure 2),  after a suitable rescaling of the abscissa. 

Results for the autocorrelation function A ( f )  are presented in figure 3. The linear 
behaviour of -In A ( f )  against In f confirms the anticipated result A ( f ) -  f - *”R/2 ,  with 
hs ,=1 .2 .  There is, however, a slight but discernible curvature in the data, such that 
the slope increases slowly with time. Therefore, the data were analysed using the 
procedure introduced for studies of spinodal decomposition [16], and also used in 
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Tit"' 
Figure2. Scalingplot f~ortheequal-timecorrelation funciion o f t h e m  lsingmadel following 
a quench from T = m  to T=O. Displacements along lattice diagonals as well as iaitice 
axes are included: there is no evidence far any anisotropy in the scaling function. The data 
iepieieni ail aveiagr of i60 hisioiiei of a i0002 sysiem, for iimes up io 646 MCS. Smdi 
departures from scaling are just observable at the earliest times, I = 20 and 40. 

' -  / 4.8 

L.6 

4.4 
- 
c 

4.2 - 

3.8 &'I/ , , , ~ 

4 . 8  5.2 5.6 6.0 4.L 
t I 

4 . 8  5.2 5.6 6.0 4.L 

In t 

Figure 3. Time dependence of the autocorrelation function A(r) for the I D  king model 
following a quench from T =  m to T =  0. The slope, 112 =O.60, increases slowly with time 
in a manner analysed in detail in figure 4. 

[l l] ,  where an effective exponent is defined via 

L(f) =-l~g~~[A(f)/A(lOl)l/~og,~[A~(~)/A~(lO~)l 

This effective exponent is shown against A € ( f )  in figure 4. It is natural to guess that 
the deviation of h,,(f) from the asymptotic is,, is due to effects that vanish as the 
length-to-area ratio of the domains [lll. Therefore one expects that the deviations 
may vanish as ~sf(f)- ,&R-AE(f).  If we ignore the short 'plateau' in the data for the 
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1.301 

0.90 o'95L 0 0.02 0.04 0.06 0.08 010 0.12 0.14 

AElt l  

Figure 4. Effective exponent Ice, defined in the tent, as a function of the cxccss energy. 
Extrapolating to AE = 0 gives - 1.24. 

latest times, which is probably due to increasing statistical noise at late times, the data 
in figure 4 extrapolate to a value Xsn= 1.24, to be compared to the value 1.25 obtained 
by Fisher and Huse [ l l ]  and conjectured to be exact. The trend is such that an 
asymptotic exponent I s n =  1.25 certainly cannot be excluded. The value isn= 1.30 
obtained by Furukawa [ 121, however, does seem to be outside any reasonable extrapola- 
tion of the data. 

3. Equilibration at T=O following a quench from T, 

The main motive behind this study is to test the prediction of new universal behaviour 
when the initial conditions exhibit long-range power-law correlations [ 101. Preliminary 
results have been presented in [lo]. The case of greatest experimental relevance is 
when the system is quenched from the equilibrium state at T,. The correlations are 
then long-range, with u = 2 - q  =1.75 for the 2~ king model. To observe this new 
universal behaviour the system must be in the long-range universality class, U >  U<= 
d -2hsn [lo]. But A s n =  d -Isn=0.76 for the 2~ Ising model, so the condition U >  U< 

is well satisfied for the equilibrium critical state. 
Equilibration at T, suffers from critical slowing down. Although the equilibration 

time, T,  is finite for a finite system, it can be very large at the critical point. This puts 
severe restrictions on simulating large lattices which are needed to reduce finite-size 
effects and to obtain better statistics. At criticality, T grows as T -  L', where L is the 
linear size of the system, and z is the dynamic critical exponent. Since 2-2.15 for the 
2~ king model [ 171, and the simulation time must be much longer than T for equilibrium 
to be established, this presents a major limitation if one is using standard Monte Carlo 
techniques for equilibrating the system. The above problem was overcome by preparing 
equilibrium states at T = T, = 2/ln( 1 +a) using the accelerated convergence algorithm 
of Wolff [13], which involves flipping a large, stochastically generated, cluster of spins 
in one Monte Carlo 'move'. The state thus generated was then quenched to T = 0 and 
evolved using conventional 'heat bath' dynamics. We simulated systems of N = 2502 
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spins, with periodic boundary conditions, and the results were averaged over 100 
independent initial configurations. 

For an infinite lattice, the equilibrium state at T, has the following form for the 
equal-time correlation function [18]: C , ( r ) =  K/r'14,  where K is a constant. For a 
finite lattice of linear dimension L, however, the equilibrium correlation function C,( r )  
should exhibit (for r and L both large compared to the lattice spacing) the finite-size 
scaling form C,( r )  = r-'14c( r /  L ) .  With periodic boundary conditions, one expects 
c(x)> K ,  i.e. C , ( r ) a  C,(r),  and this is indeed found. We define the 'equilibration 
time' T for the Wolff algorithm to be, for given L, the time beyond which r""CL(r) is 
essentially time-independent. From figure 5 ,  where we plot r'l4CL(r, t )  against r ( r s  50) 
for L =  250 and various times t, we conclude that T S  160 ws, where a 'Wolff step' ws 
corresponds to 'marking' N sites [13]. The open squares in figure 5 were obtained by 
averaging over times between 200 and 3200 ws. It is clear that there is no significant 
evolution of C,(r )  after 160 ws. 
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1.0 
t 

I 0 10 I 
0.8 1 7 20 - 40 

* 80 

160 

0 200-3200 

1 I 
0 10 20 30 40 SO 60 IO 

Figure 5. Spin-spin correlation function, multiplied by r1/4, for the 2D lsing model at T,, 
obtained using the Wolff algorithm, after various elapsed times from a random initial stale. 
No furtherevolution isobservedafter 160 ws. ThedatarepresenfanaverageoflOOhistories 
of  a 250' system. The open squares were obtained by averaging over 100 time3 between 
200 and 3200 ws for a single history. 

We found that the equilibrated system at T, had a short 'decorrelation time' p 
(defined as the time for essentially complete decorrelation of the magnetization-see 
figure 6-rather than a l/e-time) of around 15 ws. This implies that once we have 
generated an equilibrium state at T, from a given random initial configuration (corre- 
sponding to a particular state at infinite temperature) it becomes a completely new 
equilibrium critical state after p ws, where p<c T. Therefore to create an ensemble of 
equilibrium states at T,, we only needed to generate one equilibrium critical state from 
a random initial configuration. Subsequent new equilibrium states were generated by 
applying the Wolff algorithm to the previous critical equilibrium state for a further p 
ws, instead of starting from a new random initial configuration, hence saving a 
considerable amount of CPU time, The value of p was estimated from the magnetization 
correlation function in equilibrium. Figure 6 shows a plot of ( M ( t , ) M (  f,+ f ) ) / ( M ( f o ) 2 )  
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-1.oot 

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 

Figure 6. Magnetiiation-magnetization correlation function in equilibrium for a 2502 2~ 

king system updated according to the Wolff algorithm. The continuous curve is included 
as a guide to the eye. Deconelation i s  essentially complete after I5 ws. 

against t, where (. , .) indicates an average over different values of time to,  and the 
magnetization M (  t) of the sample is defined as M (  1 )  = ( I /  N )  1; Si( 1) .  The magnetiz- 
ation correlation function becomes essentially zero for I > p - 15. To allow a safety 
margin we equilibrated the initial random state for200 ws, and took states at subsequent 
intervals of 30 ws as independent equilibrium states. It is noteworthy that the ‘decorrela- 
tiori time’ for 
This is not surprising, given the nature of the algorithm: the size of the typical clusters 
generated increases as the system approaches equilibrium. 

The equal-time correlation function C (  r, 1 )  following the quench to T = 0 is presen- 
ted in scaling form in figure 7. We actually plot e( r, t )  = CL(r, t ) [  Cm(r ) /CL( r ) ] ,  where 
C, and C, were defined above. This correction is designed to remove, as far as possible, 

finite-size effect present. These arise due to the long-range initial correlations built in 
the system due to the system being in an equilibrium state at T,. A further refinement 
was to select only initial equilibrium states with magnetization per spin IMI<0.01. If 
all equilibrium states are included, the data fall on the same scaling curve at short 
times, but break away at  later times. This is because IMI is typically quite large at T, 

we expect /MI-0.6 for L =  250, a result confirmed by the simulations. As a result, the 
system usually reaches a single domain quite quickly, taking the system out of the 
scaling regime. (The large typical values of 1.44 in  equilibrium at T, is presumably 
responsible for the oscillations in figure 6.) Selecting initial states with small lM/  
enables us to artificially expand the scaling regime. Since the probability distribution 
for M has the scaling form P ( M )  = L”’:f(MLp/”) ,  our procedure corresponds to 
selecting states from a narrow band in the centre of the distribution. In practice this 
was achieved by selecting the first state generated with IM1<0.01 after at least 30 ws 
had elapsed from the previously selected state. 

To test the prediction (12) for the asymptotic behaviour of the scaling function, 
i.e. e ( ,  1 )  - ( & / r ) ’ I 4  in this case, we plotted the product (i- /&)‘I4e(r,  1 )  against r/&. 

w0;i; a;goriihm is m-uch shogtei ihan the ‘equi&iaiion iime’ ~. 

hite-size (bonndary) ezects i:: the spatia! co::e!atia-s a: !T e, :his being the daz-ixaxt 

for the N = 2502 systems studied here: finite-size scaling yields /MI - L?’” = L-”’ , so 
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Figure 7. Scaling plot for the equal-time correlation function of the m king model, 
following a quench from T =  T, 10 T=O. The data, which represent an average of 100 
histories af a 250' system, have been adjusted for finite-sire effects as described in the text. 
The braken curve shows the asymptotic behaviour Clr .  :!-0.96(J?/r]'/'. 

In  this form, the data saturates a t  -0.96 for r/&>4, implying C(r,  1 )  =0.96(&/r)"4 
for large r/&. The broken curve in figure 7 shows this asymptotic behaviour. This 
scaling function is quite different from that associated with the conventional quench 
from the high-temperature phase, shown in figure 2. The short-distance behaviour, 
however, is still linear, in accordance with Porod's law [ 141, which is simply a 
consequence of the sharp domain walls in a system with a scalar order parameter. 

The results for the autocorrelation function are also consistent with the prediction 
A(t) - i -1"6.  In this case we were unable to correct simply for the finite-size effects 

t 
0.9 

0.8 

0.6 

= 100 

0 150 

* 180 

250 

0.5 
0 0.0: 0: 0.06 0.08 030 0 2  0:L 

t"'lL 

Figure 8. Finite-size scaling analysis of the autocorrelation function A ( t )  for the 2 0  king 
model quenched from T = T, lo T=O. The data are averaged over 200 histories for each 
system size. The excellent collapse of the data, except for the smallest system, verify the 
predicted form A(r) -  I-"". 
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on the initial condition which, as is clear from figure 5 ,  yield a CL(r, 0) decreasing 
more slowly with r than l/r'14. As a result, we must employ finite-size scaling methods. 
Anticipating the finite-size scaling form A(f) = tC1'l6a(&/L), the argument of the 
scaling function a being the ratio of the domain scale to the system size, we plot (figure 
8) t""A(t) against &/L,  for values of L in the range 5 0 s  L s 2 5 0 .  Except for the 
smallest system size, the data collapse is excellent, confirming the prediction made in 
[IO]. The deviation from the scaling curve of the L =  50 data can be attributed to the 
relativelysmall values oft involved: &/L = 0.08, for example, corresponds (for L =  50) 
to = 16, which is not in the scaling regime. 

4. Equilibration at T, following a quench from T =m 

For this quench we simulated lattice sizes up  to 400x400 spins, with periodic boundary 
conditions. Data for smaller sizes show that the results presented here for N = 4002 
are not finite-size affected. Averages were taken over 1500 independent random initial 
conditions run for 400 MCS using a standard beat bath algorithm. Our main goals are 
to determine the exponent A, of (61, and the form of the scaling function fc(x) in (4). 
Rather than compute A c  directly, we compute instead the equivalent exponent ic= 
d - A c ,  through a study of the autocorrelation function A(t) .  Arguments identical to 
those leading to (IO) give, for a quench to T,, 

A ( t )  - ( ( t ) - " -  t-id' (15) 
for initial conditions with short-range correlations. This exponent has been measured 
previously by Huse [3], using a larger number of smaller systems, and our results are 
in good agreement with his. Our study of the scaling function f c ( x )  is, as far as we 
know, new and reveals interesting short-distance behaviour which we can understand 
from general scaling arguments. 

Data for the equal-time scaling function J c ( x )  = r''4C(r, t )  is presented in figure 9, 
where the abscissa is the scaling variable x = r/ t"', with z = 2.15 [ 171. The data collapse 
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0 160 

* 320 
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0 1 2 3 L 5 6 

Figure9. Scaling plot, with r=2.15, fo r the  equal-time Correlation function o f the  2" k ing  
model quenched from T = m  to T =  T.. The data are averaged over I500 histories of a 
400' system. 
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is excellent, confirming both the scaling form (4) and the value of z. Note that for 
small scaling variable the scaling function is almost linear. While this behaviour is 
superficially reminiscent of Porod's law for the scaling function at T=O (section 2), 
its origin is quite different, and will be discussed in detail below. 

The results for A(t) and ( M * ( t ) ) / N  are presented in figure IO, where M ( t )  is now 
the total magnetization of the sample. Well established power-law behaviour is seen 
for times 10-400 MCSS. The fit to A ( / )  gives , ic /z  =0.74*0.01, or  X c =  1.59*0.02 when 
we use z=2.15.  This result agrees with that of Huse [3]. The scaling expectation is 
that ( M 2 ( t ) ) -  t(2-s)'T [3]; the slope in figure 10 is consistent with this, within the errors. 

We consider now the scaling form (4) for C(r ,  t), and determine the form of the 
scaling function for r / t ' ' :<< 1, i.e. the 'short-distance' expansion. 

K Humayun and A J Bray 

2 
1 2 3 4 5 6 

1" t 
Figure IO. Time-dependence ofthe autocorrelation funclion A ( : )  and the'nan-equilibrium 
susceptibility' ( M ' ( i ) ) / N ,  for the 21) king model quenched from J = m  to T =  T,. The 
d a h  are an average of 1500 histories of  a syslem of N =400' spins. 

4.1.  Short-distance expansion: scaling arguments 

Consider first the equilibrium correlation function just above T,. It has the short- 
distance expansion [ 191 

where .f is the equilibrium correlation length, 2, I?, 5 are constants and a, 7, U are 
the usual static critical exponents. In the non-equilibrium situation following a quench 
to T,, the equal-time correlation function should have the same short-distance 
expansion (16), but with coefficients that now depend on the scaling variable //(' or, 
equivalently, on . f ( r ) / . $  where < ( t )  - I"' is the 'non-equilibrium correlation length of 
(4). Thus scaling implies that C ( r ,  t )  has the short-distance expansion (16) but with 
2, I? and e becoming functions of ( ( I ) / . $ .  These scaling functions should be such 
that the equilibrium result (16) is recovered in the limit ( ( 1 )  >> c. In  this paper, we are 
interested in the non-equilibrium relaxation at T,, which corresponds to the opposite 
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limit #( I )<< 5-m. In this limit, # should drop out of the expression for C(r, 1): 
effectively we replace # by g ( t )  in (16), to obtain the desired short-distance expansion 

where A’, B’, C’ are new constants (in fact, and C’ are equal since both are the 
equilibrium critical amplitude). For the ZD Ising model, = 0 and v = 1, so both terms 
in the bracket become linear in r/t”’ in agreement with the data in figure 9. (Actually, 
a = O  should probably be interpreted as a logarithm, implying a term in 
(r/t’”) ln(r/l’”). This is also consistent with the data.) 

Equation (17) has been derived from scaling considerations. In the following two 
subsections we calculate C(r ,  f) explicitly to first order in E = 4 - 4  and leading order 
in I / n  for an n-component order parameter, and verify that the results are consistent 
with (17). 

4.2. The E-expansion 

We can derive the small-r behaviour of C(r ,  I )  from the short-distance expansion for 
its Fourier transform S,( 1) .  The calculation is a relatively straightforward extension 
of the work of janssen et ai i4j. 

The analysis starts from the continuum Langevin equation 

a+:/at=-r, (r+k’)+;+(u/Ld) +i4{+L-p-q}+5k(~) (18) I *&’I 

where Ld is the volume ofthe system, i, j label Cartesian components in order parameter 
space, and & ( f )  is a Gaussian white noise with correlator 

(#:(t)~’*.(t’))=zr~s,~s~,*,s(t- t ’ ) ,  

With an appropriate choice of units of time, we may take T x  = 1 for model A dynamics. 
We also take the distribution of initial conditions to be Gaussian with mean zero and 
correlator defined by a natural extension of (8): [+;(0)&(0)] = A8,,j8kk,. 

The central quantity to  compute is Gk( f, t’) =(a$;( f)/a&( t’j), which is the response 
of the field at time I to thermal noise acting at time 1;. Janssen et ai (4j showed that 
A is an irrelevant variable and can be set to zero in all loop corrections. Therefore one 
only needs to average over thermal noise. To O(E) the result is [4] 

G,(I, t’) = ( t / f ‘ ) ‘ ‘ c / ’  exp{-k2(t-t’)] I >  f’ (19) 

with h , / z  E(n+2)/4(n +8). - ~ ?~ ~.~ ~ - I  -, I- .: --,.. ine sirucrure racror u ( s i  IS ainiyry 

& ( I )  = 2  1; dt’ G ~ ( I ,  1’ ) .  

Using (19), the integral can be evaluated asymptotically for large k2t to give 

To compare this result with the general Corm ( i7) ,  wue firbt Fourier transform the 
latter to obtain 

S k ( l )  = Ck-‘z-7’[l +A(kf’ / ’ ) - ‘*-“”“+ E(kl”)-”’+. . .] (22) 
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where A, E, C are simply related to A’, E‘,  C’. Substituting the values of the exponents 
a, 7, Y and z to O ( E )  [ZO], we get 

K Humayun and A I Bray 

S k ( l )  = Ck-’[l + ( A / k Z t ) ( l  + 3 ~  I n ( k 2 t ) / ( n  +8)) 

+ ( B / k ’ f ) ( l  + E In(k2t){(n +2) /2 (n+Z) ) )+O(~~) ] .  (23) 

Comparison with (22) gives A = ( n + 2 ) 2 ~ / ( 4 ( n - 4 ) ( n + 8 ) } ,  E =  
-6(n+z)~/{ (n-4) (n+S)}  and C = l .  

4.3. The large-n limit 

We can also compute the structure factor in the limit n+m. Again, our result is a 
straightforward extension of reference [4]. For n =m, the response function is given 
exactly by (19), with A,/z = (4-d)/4,  and the structure factor is given exactly by (20). 
Hence the asymptotic expansion for large k2t is the same as (21), but with (4-d) /4  
replacing & ( n  +2)/{4(n +8)): 

Sk( 1 )  = k-2[ 1 +(4-  d)/4k2t+O( l/k4f2)]. (24) 

Substituting into (22) the values of the exponents a, 7, U and z for n =a [20], and 
ignoring the higher-order terms gives 

S,( t )  = Ck-2[ 1 + A /  k2t + B/(kl”’)d~2].  

Comparing with (24) gives A = (4 - d)/4,  B = 0 and C = 1 in the large-n limit. Naturally, 
these results agree with the large-n limit of the O ( E )  results. 

5. Discussion and sumriiav 

The growth of order in Ising spin systems, following a quench to either T = T, or 
T = 0, has been studied by Monte Carlo simulations in two dimensions. For a quench 
to T = 0, the developing order corresponds to the growth of domains of the two pure 
phases. The form of the equal-time correlation function depends on whether the system 
is quenched from the high-temperature phase, when the system immediately after the 
quench possesses only short-range spin correlations, or from equilibrium at T,, when 
long-range spin correlations are present. In the latter case, the large-argument form 
of the scaling function, and the exponent describing the decay of the autocorrelation 
function, are in agreement with theoretical predictions [ 101. 

Since a T = 0 RG fixed point should describe domain growth throughout the ordered 
phase, the exponents and scaling functions obtained here for quenches to T = 0 should 
also describe domain growth for general temperatures T < T,.  Similarly, a quench 
from any initial temperature in the high temperature phase should give the same 
asymptotic results as a quench from T = m: any short-range correlations present in 
the initial condition become irrelevant when the domain scale L ( t )  exceeds the 
correlation length of the initial condition. 

For a quench from high temperatures to T,, the developing order corresponds to 
the establishment of critical correlations over a length scale ( ( t ) - l ” ’ ,  a sort of 
‘non-equilibrium correlation length’ analogous to the domain scale L ( t )  for quenches 
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to T = 0. The exponent ic describing the decay of the autocorrelation function has 
been determined, and is in good agreement with the result of Huse [3]. We have also 
determined the scaling function f , (x )  for the equal-time correlation function (equation 
(4)), and have shown that the small x behaviour is consistent with the short-distance 
expansion derived from scaling arguments and from E -  and I/n-expansions. 

In the course of this work it was necessary, in order to investigate the role of initial 
conditions on the growth kinetics at T = 0, to generate equilibrium states at T,. Problems 
associated with critical slowing down were eliminated by employing the Wolff algorithm 
[ 131. It was found that the system can be equilibrated in a reasonable time (-160 ws), 
but that this time is much longer than the correlation time for the magnetization in 
equilibrium, a result which is quite reasonable given the nature of the algorithm. The 
finite-size scaling function for the equilibrium spin-spin correlation function was also 
computed (the upper data set in figure 5), i.e. the function c ( x )  in C,(r)  = rF114c(r /L) .  
i n e  dependence on 'x for x c  i is aimost iinear (see figure j), a fact which can be 
understood from a short-distance expansion for c(x) analogous to that derived in 
section 4 for the equal-time correlation function at T,. Essentially one just replaces 
the non-equilibrium correlation length [ ( t )  by the lattice size L in (17) ,  to obtain 
C , ( r ) = ( C / r " 4 ) [ 1 + A ( r / L ) " - ~ ) ' Y + B ( r / L ) 1 ' Y + . .  .I, where A, B are new constants. 
For the ZD king model, a = 0 and U = 1 imply a linear correction to the infinite lattice 
iesuk, up io a possible iogariihm. 

-. 
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